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1 Introduction

1.1 What are Differential Equations?

In order to define what a differential equation is, it is useful to have another concept to compare
it against. An algebraic equation is something such as  +5 = 12 or y2 — y + 1 = 0; there is an
unknown variable, and to “solve” the equation is to give a numerical value for the unknown variable
which satisfies the equation.

In contrast, a differential equation is an equation involving an unknown function and one or
more of its derivatives. To “solve” a differential equation is to give a function which satisfies the
equation.

You may ask why we should study differential equations. The answer is that it is often easier
to describe how a certain quantity is changing than the value of that quantity itself.

Example 1.1.1. Suppose we are interested in Maryland’s rabbit population P(t) as a function
of time. With the (unreasonable) assumption of unlimited carrying capacity, then it is natural to
expect that P’ oc P. In other words, the more rabbits there are, the more rabbits are being born
at any given time. Introducing a constant of proportionality r, we can express this relationship as

the differential equation
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Can you solve this using what you know from calculus?

Example 1.1.2. Suppose I am holding a basketball 1 meter off the ground and throw it straight
upwards with an initial velocity of 8 m/s. Recall that acceleration due to gravity is 9.8 m/ s?. This
means that the ball’s distance from the ground y(¢) in meters as a function of time is governed by
the differential equation
d?y
dt?
with the initial condition y(0) = 1. Can you solve this? How high will the basketball get?

=-9.8

Example 1.1.3. The SIR model is popular for modeling the spread of infectious diseases. It
compartmentalizes people into three categories: susceptible (5), infectious (I), and recovered (R).
Initially, 1 person may be infectious, 0 people have recovered, and everyone else is susceptible.
Then by making similar assumptions as in the rabbit example, we can predict the spread of the
disease will be governed by the system of differential equations
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We will talk more about systems of differential equations at the end of the semester.

1.2 Calculus Review

It is crucial that you are comfortable with common integration methods, especially u-substitution
and integration by parts.

1
Exercise 1.2.1. Evaluate /dt.
tint

Exercise 1.2.2. Evaluate /tet dt.


https://en.wikipedia.org/wiki/Compartmental_models_(epidemiology)#The_SIR_model_without_birth_and_death
https://tutorial.math.lamar.edu/classes/calci/substitutionruleindefinite.aspx
https://tutorial.math.lamar.edu/classes/calcii/integrationbyparts.aspx

2 First-Order Linear Differential Equations

2.1 Classification of Differential Equations

A linear differential equation is one in which the unknown function and its derivatives appear
linearly; that is, terms may be scaled by functions of ¢ and added together but no more, like so:
dy d?y d™y
ap(t)y +a1(t)— +az(t) =5 + - +an(t)— = ().
o(B)y +ar ()5 + aalt) T2 W05 = 7 (1)

The order of a differential equation refers to the highest derivative present in the equation; hence,
a first-order differential equation contains a first derivative term, but no higher derivatives. Our
focus for the beginning of the semester will be on first-order linear differential equations, which can
be written in the so-called linear normal form:

dy

Yt altyy = 1(0).

When the function f(t) is identically zero, we will call the differential equation homogeneous.
Exercise 2.1.1. For each differential equation below, determine its order and whether it is linear.

If so, write it in linear normal form and determine whether it is homogeneous.

dpP
(a) Fri rP, modeling population growth with unlimited carrying capacity.

dP P
(b) e rP (1 - L>’ modeling population growth with carrying capacity L.
d?z . . . . .
(c) m@ = —kx, governing simple harmonic oscillators such as a mass on a spring.
dT , . . .
(d) T —k(T — T,), Newton’s law of cooling with ambient temperature 7.

2.2 Solving Homogeneous Equations

We’re now able to classify differential equations, so how can we solve them? We’'ll start by studying
first-order homogeneous differential equations, which can be written in the linear normal form:

dy
= +a(t)y = 0.
3 Tal)y

But what is this asking? Well, for a function y(t) whose first derivative is a(t) times itself. Recalling
the chain rule and the properties of the exponential function, we can guess the family of solutions

y(t) = Ce™) where A(t) = /—a(t) dt.
Note that you are always able to check the solution to a differential equation by differentiating and
ensuring the equation is satisfied. The above is a “family” of solutions because the value of C can

be any real number.

d
Exercise 2.2.1. Solve the first-order homogeneous differential equation d—zt/ = %y with y(0) = 5.


https://en.wikipedia.org/wiki/Harmonic_oscillator#Simple_harmonic_oscillator
https://en.wikipedia.org/wiki/Newton's_law_of_cooling

2.3 Integrating Factors

We now know how to solve homogeneous equations, but what about the general linear normal form
dy

— t+alt)y=Js(t
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where f(t) is not necessarily zero? For this we will use integrating factors, which are based on the
following idea: let A(t) be an antiderivative of a(t) and notice that by the product rule,

d d d
. [ey] = 6A<t>di; +a(t)erVy — (d?i + a,(t)y) e,
which we recognize as eA(*) times the left-hand side of our differential equation. Hence, multiplying
our differential equation by eA®), we can rewrite it as
d
4 a0y] = 1050,
which we will call the integrating factor form of the differential equation. Then by integrating both
sides, we can obtain the family of solutions

y(t) = e 40 /eA(t)f(t) dt + Ce=4®),

Exercise 2.3.1. A 120 gal tank initially contains 90 1b of salt dissolved in 90 gal. Brine containing
2 Ib/gal of salt flows into the tank at a rate of 4 gal/min, and the well-stirred mixture flows out of
the tank at a rate of 3 gal/min. How much salt does the tank contain when it is full?

Solution: The salt in the tank is changing according to the differential equation

ds S 35
_— = in — out — 24 — _ . — -
qp = Sin = Sow = (2-4) (90—|—t 3> S G0+

with the initial condition S(0) = 90. Moreover, the tank will become full at ¢ = 30. Rewriting
in linear normal form, we obtain

ds 3
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dt 90 + ¢

and so we find the antiderivative

3
——dt = 31 t).
90+ 31n(90 +¢)

Hence, multiplying by the integrating factor e31(90+t) — (90 +t)3, we can rewrite the equation
in the integrating factor form

% [(90 +1)35] = 8- (90 + t)*

and hence

! = [2-(90+ 1)+ C] —2.(90+t)+mit)3.

S(t) = 0+ oF

M/s-(goﬂ)?’dt—

To enforce the initial condition S(0) = 90, we find C = —90% and hence S(30) ~ 202.031 1Ib.
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