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1 Matrix Algebra

1.1 Matrix Multiplication

Definition 1.1.1. If A is an m× n matrix and B is an n× p matrix, then AB denotes the m× p
matrix with entries given by

(AB)ij =

n∑
k=1

AikBkj

Note that this definition implies that in order for the product AB to be defined, the number of
columns of A must match the number of rows of B.
Exercise 1.1.2. Given the matrices

A =

[
2 0 −1
4 −5 2

]
, B =

[
7 −5 1
1 −4 −3

]
, C =

[
1 2
−2 1

]
, D =

[
3 5
−1 4

]
, E =

[
−5
3

]
,

compute each of the following expressions:

−2A, B − 2A, AC, CD, A+ 2B, 3C − E, CB, EB

If an expression is undefined, explain why.
Exercise 1.1.3. If a matrix A is 5× 3 and the product AB is 5× 7, what is the size of B?
Proposition 1.1.4. Let A, B, and C be matrices such that the sums and products below are
defined. It is not difficult to prove the following properties of matrix multiplication.

(a) Associativity: A(BC) = (AB)C

(b) Left Distributivity: A(B + C) = AB +AC

(c) Right Distributivity: (B + C)A = BA+ CA

Matrix multiplication is not commutative in general; indeed, we will see examples of matrices A
and B such that AB ̸= BA.
Exercise 1.1.5. Given the matrices

A =

[
2 5
−3 1

]
, B =

[
4 −5
3 k

]
what value(s) of k, if any, will make AB = BA?
Exercise 1.1.6. Given the matrices

A =

[
2 −3
−4 6

]
, B =

[
8 4
5 5

]
, C =

[
5 −2
3 1

]
verify that AB = AC and yet B ̸= C. This shows that matrix multiplication does not satisfy
“cancellation” either.

1.2 Matrix Transpose

Definition 1.2.1. If A is an m× n matrix, then AT denotes the n×m matrix with entries

(AT )ij = Aji

which we call the transpose of A.
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Proposition 1.2.2. If A and B are matrices such that the following are defined, then

(a) (AT )T = A

(b) (A+B)T = AT +BT

(c) (AB)T = BTAT

1.3 Matrix Inverse

Definition 1.3.1. We write In to denote the n× n identity matrix, whose entries are given by

(In)ij =

{
1 i = j

0 i ̸= j
.

To give a few concrete examples,

I2 =

[
1 0
0 1

]
, I3 =

1 0 0
0 1 0
0 0 1

 , In =


1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1


When n is clear from context, we may also simply denote it as I.
Definition 1.3.2. If A is an n×n matrix, it is said to be invertible if there exists an n×n matrix
B such that

BA = In = AB

in which case B is said to be the inverse of A. The usage of the word the here is justified, since
the matrix inverse is unique; suppose A had another inverse C. Then

B = BIn = BAC = InC = C,

showing the inverse is unique. Hence, we are justified in writing A−1 to denote the inverse of A. A
matrix that is not invertible is sometimes called a singular matrix.
Proposition 1.3.3. If A and B are invertible matrices such that AB is defined, then

(a) (A−1)−1 = A

(b) (AB)−1 = B−1A−1

(c) (AT )−1 = (A−1)T

Proposition 1.3.4. In practice, we can invert a matrix via an algorithm involving row operations.
In particular, we can row reduce the augmented matrix

[
A I

]
. If A is row equivalent to I, then[

A I
]
is row equivalent to

[
I A−1

]
. Otherwise, A does not have an inverse.

Exercise 1.3.5. Find the inverse of the matrix

A =

0 1 2
1 0 3
4 −3 8


if it exists.
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Proposition 1.3.6. 2× 2 matrices are small enough such that it is convenient to write an explicit
formula for their inverse. In particular, suppose

A =

[
a b
c d

]
.

Then as long as ad− bc ̸= 0, A is invertible, and its inverse is

A−1 =
1

ad− bc

[
d −b
−c a

]
.

The quantity ad− bc is called the determinant of A. We will see much more of it in the future.
Exercise 1.3.7. Suppose A, B, and X are n×n matrices with A, X, and A−AX invertible, and
suppose

(A−AX)−1 = X−1B.

(a) Explain why B is invertible.

(b) Solve the above equation for X. If you need to invert a matrix, explain why that matrix is
invertible

Exercise 1.3.8. If A, B, and C are n× n invertible matrices, does the equation

C−1(A+X)B−1 = In

have a solution, X? If so, find it.

2 Determinants

2.1 Cofactor Expansion

Definition 2.1.1. Let n ≥ 2 and let A be an n×n matrix. The determinant of A is the quantity

det(A) =
N∑
j=1

(−1)1+ja1jA1j

where A1j is the (n − 1) × (n − 1) matrix obtained by deleting the 1st row and the jth column
from A. Note that the values that the a1j term takes over this summation are the entries in the
first row of A; hence, this formula is known as the cofactor expansion across the first row of A.
It can be proven that analogous cofactor expansions across any row or column of A will yield the
same quantity.
Exercise 2.1.2. Compute the determinant of

A =


4 0 0 5
1 7 2 −5
3 0 0 0
8 3 1 7

 , B =


6 0 2 4 0
9 0 −4 1 0
8 −5 6 7 1
2 0 0 0 0
4 2 3 2 0

 , C =


3 0 0 0
7 −2 0 0
2 6 3 0
3 −8 4 −3


via cofactor expansion. With careful choice of the row or column at each step, this requires minimal
computation.
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Solution: The natural choice is to cofactor expand across the third row, seeing as it is primarily
zeros. Continuing this strategy of cofactor expanding across the row or column with the most
zeros at each step, we find

det(A) = 3 det

0 0 5
7 2 −5
3 1 7

 = 3 · 5 det
[
7 2
3 1

]
= 3 · 5 · 1 = 15.

Proposition 2.1.3. An n× n matrix A is invertible if and only if det(A) ̸= 0.

2.2 A Cheaper Algorithm

Remark 2.2.1. We have seen that we can obtain useful information about a matrix from its
determinant. For example, to answer whether A is invertible, we can simply check that det(A) ̸= 0.

However, computing determinants by cofactor expansion is wildly inefficient; cofactor expansion of
an arbitrary n× n matrix requires on the order of n! multiplications. When n = 3 or 4, this is not
so bad, but for n = 25, a computer performing one trillion multiplications per second would still
take about 500,000 years. This motivates our search for alternative means of computation.
Proposition 2.2.2. The determinant plays nicely with elementary row operations. In particular,

(a) If a multiple of one row of A is added to another to produce a matrix B, then detB = detA.

(b) If two rows of A are interchanged to produce a matrix B, then detB = − detA.

(c) If one row of A is multiplied by k to produce B, then detB = k detA.

This proposition will serve as the basis for our more efficient determinant computation. In partic-
ular, given a matrix A, if we can apply row operations until we reach some matrix B for which we
can compute detB cheaply, this proposition will allow us to recover detA. This begs the question,
for which matrices B can we compute detB cheaply?
Definition 2.2.3. Let A be an n × n matrix. If all entries above the main diagonal of A are 0,
then we say that A is lower triangular. Likewise, if all entries below the main diagonal are 0,
then we say it is upper triangular.

The matrices L and U below are examples of n×n lower triangular and upper triangular matrices
respectively. Note that our definition allows non-zero entries to lie on the diagonal.

L =


ℓ11 0 0 . . . 0
ℓ21 ℓ22 0 . . . 0
ℓ31 ℓ32 ℓ33 . . . 0
...

...
...

. . .
...

ℓn1 ℓn2 ℓn3 . . . ℓnn

 , U =


u11 u12 u13 . . . u1n
0 u22 u23 . . . u22
0 0 u33 . . . u3n
...

...
...

. . .
...

0 0 0 . . . unn


A triangular matrix is simply one which is either lower triangular or upper triangular.
Proposition 2.2.4. If A is an n× n triangular matrix, then

detA =

n∏
k=1

akk
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That is, for triangular matrices, the determinant is the product of its diagonal entries. No cofactor
expansion required!
Example 2.2.5. Find the determinants of the below matrices

A =

 1 5 −4
−1 −4 5
−2 −8 7

 , B =


1 3 0 2
−2 −5 7 4
3 5 2 1
1 −1 2 −3


by row reduction to echelon form.

2.3 Properties of the Determinant

Remark 2.3.1. Another way to cheapen the cost of computing determinants is to put the de-
terminant of the expression of interest into terms already known determinants. This section will
explore properties of the determinant that make this possible.
Exercise 2.3.2. Suppose we have the matrix

A =

[
3 1
4 2

]
Is it true that det 5A = 5detA? Further, now let

A =

[
a b
c d

]
and let k be a scalar. Find a formula that relates det kA to k and detA.
Proposition 2.3.3. Let A and B be n× n matrices. Then

(a) detAT = detA

(b) detAB = det(A) det(B)

Note that property (b) implies several other properties; for example, det(Ak) = det(A)k and
det(kA) = kn det(A). Try to convince yourself that these properties follow.
Exercise 2.3.4. Let A and B be 3× 3 matrices, with detA = −2 and detB = 3. Use properties
of determinants to compute:

detAB, det 5A, detBT , detA−1, detA3

Exercise 2.3.5. Let A and B be 4× 4 matrices, with detA = 4 and detB = −3. Compute:

detAB, detB5, det 2A, detATBA, detB−1AB

2.4 Cramer’s Rule

Proposition 2.4.1 (Cramer’s Rule). Let A be an n× n invertible matrix. Then for any b ∈ Rn,
the unique solution x of Ax = b is given by

xi =
detAi(b)

detA
, i = 1, 2, . . . , n

where Ai(b) denotes the n× n matrix obtained from A by replacing column i by the vector b.
Exercise 2.4.2. Use Cramer’s rule to compute the solutions of the system

x1 + 3x2 + x3 = 8

−x1 + 2x3 = 4

3x1 + x2 = 4
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3 Abstract Vector Spaces

Remark 3.0.1. Until now, we have primarily considered vectors only as elements of Rn, that
is, as lists of real numbers. We will now broaden the meaning of “vector” and reconsider many
previously-studied concepts using this new definition.

3.1 Vector Spaces

Definition 3.1.1. A vector space (over a field of scalars1 F) is a nonempty set V together with
two operations + and · such that all the following are true for all u,v,w ∈ V and all c, d ∈ F.

(a) V is closed under addition: u+ v ∈ V .

(b) Addition is commutative: u+ v = v+ u.

(c) Addition is associative: (u+ v) +w = u+ (v+w).

(d) There exists a zero vector, notated 0, such that u+ 0 = u.

(e) V is closed under additive inverses: there exists a −u ∈ V such that u+ (−u) = 0.

(f) V is closed under scalar multiplication: cu ∈ V .

(g) Scalar multiplication distributes over addition: c(u+ v) = cu+ cv.

(h) Scalar multiplication distributes over scalar addition: (c+ d)u = cu+ du.

(i) Scalar multiplication is compatible with field multiplication: c(du) = (cd)u.

(j) The scalar 1 is the identity element of scalar multiplication: 1u = u.

If V is a vector space, we refer to the elements of V as vectors.
Example 3.1.2. Rn with n ≥ 1 is a vectors space, and what we have primarily studied until now.
Example 3.1.3. Let n ≥ 0 and define

Pn = {p(t) : p(t) is a polynomial of degree at most n}
= {a0 + a1t+ a2t

2 + · · ·+ ant
n : a0, a1, a2, . . . , an ∈ R}.

We claim that Pn is a vector space with addition and scalar multiplication defined in the “natural”
way. What would the zero vector in this vector space be?

3.2 Subspaces

Definition 3.2.1. Let V be a vector space. A subset H ⊆ V is a subspace of V if H is also a
vector space (with the same addition and scalar multiplication as V ).

Many of the ten vector space axioms are automatically satisfied since V is a vector space; indeed,
to conclude that H ⊆ V is a subspace of V , it suffices to check the following.

(a) The zero vector of V is in H.2

(b) H is closed under addition.

1One may think of the “field of scalars” as whatever set from which the “entries” the vectors come. For now, it
is safe to assume F = R, but there is not much difference if F = C or even a finite field.

2Equivalently, one could require that H be nonempty. Try to convince yourself that this condition is equivalent.
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(c) H is closed under scalar multiplication.
Example 3.2.2. Let V be a vector space with v1, . . . ,vp ∈ V . Then

span{v1, . . . ,vp} := {c1v1 + · · ·+ cpvp : c1, . . . , cp ∈ F}

is a subspace of V . In particular, this means that if we are able to express some set of vectors as a
span, then that set is indeed a subspace.
Exercise 3.2.3. Show that the set


a
b
c
d

 : a+ 3b = c, b+ c+ a = d


is a subspace of R4 be writing it as a span.
Example 3.2.4. Let A be an m × n matrix. We define the null space of A and the column
space of A to be the sets

NulA := {x ∈ Rn : Ax = 0}, ColA := {Ax : x ∈ Rn}.

It can then be shown that NulA is subspace of Rn, and likewise ColA is a subspace of Rm.

3.3 Linear Transformations

Definition 3.3.1. Let V and W be vector spaces. A transformation T : V → W is linear if

(a) T (u+ v) = T (u) + T (v) for all u,v ∈ V ,

(b) T (cu) = cT (u) for all u ∈ V and c ∈ F.
Example 3.3.2. The transformation D : P2 → P1 given by differentiation is linear.
Definition 3.3.3. Let T : V → W be a linear transformation. The kernel of T is the set

{u ∈ V : T (u) = 0}

and likewise the range of T is the set

{T (x) ∈ W : x ∈ V }.

Exercise 3.3.4. Define a linear transformation T : P2 → R2 by

T (p) =

[
p(0)
p(0)

]
.

Find polynomials p1 and p2 in P2 that span the kernel of T , and describe the range of T .

3.4 Bases & Dimension

Definition 3.4.1. Let V be a vector space. We say that a set of vectors {v1, . . . ,vp} ⊆ V is
linearly independent if the equation

c1v1 + · · ·+ cpvp = 0

has only the trivial solution c1 = · · · = cp = 0. Otherwise, the set is linearly dependent.
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Definition 3.4.2. Let V be a vector space with subspace H. An indexed set of vectors B =
{b1, . . . ,bp} ⊆ V is a basis for H if B is a linearly independent set such that H = spanB.
Example 3.4.3. Many vector spaces have “standard” bases which should be treated as the default
bases for these spaces unless a different basis is specified. For example, R3 has the standard basis

10
0

 ,

01
0

 ,

00
1

 ,

while the standard basis for P2 is the basis of monomials {1, t, t2}. It should not be difficult to
imagine the generalizing these bases for Rn and Pn for other values of n.
Exercise 3.4.4. Assuming that A is row equivalent to B, find bases for NulA and ColA.

A =

−2 4 −2 −4
2 −6 −3 1
−3 8 2 −3

 , B =

1 0 6 5
0 2 5 3
0 0 0 0


Proposition 3.4.5. If a vector space V has a basis of n vectors, then every basis of V must consist
of exactly n vectors.

As a result, we call the number of vectors in a basis for V the dimension of V , denoted dimV . If
V is not spanned by a finite set, then V is said to be infinite-dimensional.
Example 3.4.6. From the example above, we see that dimR3 = dimP2 = 3, since both have bases
consisting of 3 vectors. Indeed, in general we have that

dimRn = n, dimPn = n+ 1.

Definition 3.4.7. Suppose B = {b1, . . . ,bn} is a basis for a vector space V , and x ∈ V . The
B-coordinate vector of x is the vector

[x]B =

c1...
cn

 such that c1b1 + · · ·+ cnbn = x.

Exercise 3.4.8. The set B = {1 + t2, t + t2, 1 + 2t + t2} is a basis for P2. Find the coordinate
vector of p(t) = 1 + 4t+ 7t2 relative to B.

3.5 Change of Basis

Proposition 3.5.1. Let B = {b1, . . . ,bn} and C = {c1, . . . , cn} be bases of a vector space V .
Then there is a unique n× n matrix PC←B such that

[x]C = PC←B[x]B.

In particular, the columns of PC←B are the C-coordinate vectors of the vectors in the basis B:

PC←B =
[
[b1]C [b2]C . . . [bn]C

]
.

Example 3.5.2. In practice, the change of basis matrix is computed via row reduction:[
c1 c2 . . . cn | b1 b2 . . . bn

]
∼
[
I | PC←B

]
.
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For example, the sets

B =

{[
1
−3

]
,

[
−2
4

]}
and C =

{[
−7
9

]
,

[
−5
7

]}
are each bases for R2. To find the change of basis matrix from B to C, we find by row reduction[

−7 −5 1 −2
9 7 −3 4

]
∼
[
1 0 2 −3/2
0 1 −3 5/2

]
and so the change of basis matrix from B to C is

PC←B =

[
2 −3/2
−3 5/2

]
Proposition 3.5.3. Let B = {b1, . . . ,bn} and C = {c1, . . . , cn} be bases of a vector space V .
Then the change of basis matrices from B to C and from C to B are related in the following way:

PC←B = (PB←C)
−1 .

4 Eigenthings

4.1 Eigenvalues & Eigenvectors

Definition 4.1.1. Let A be an n× n matrix. We say that a nonzero vector x is an eigenvector
of A if Ax = λx for some scalar λ, in which case λ is an eigenvalue of A.

Exercise 4.1.2. Verify that

 1
−2
1

 is an eigenvector of

2 6 7
3 2 7
5 6 4

. What is its corresponding

eigenvalue?
Remark 4.1.3. Given a matrix A and a candidate eigenvector x, it is easy to check whether x
is indeed an eigenvector of A; simply compute the product Ax and check whether it is a scalar
multiple of x.

The situation is a bit harder if you are instead given a matrix A and a candidate eigenvalue λ, but
the following allows us to deal with this case.
Proposition 4.1.4. Let A be an n× n matrix. Then a scalar λ is an eigenvalue of A if and only
if the equation

(A− λI)x = 0

has a nontrivial solution. If it does, such a nontrivial solution is an eigenvector corresponding to λ.

Proof. By definition, λ is an eigenvalue of A if Ax = λx for some nonzero vector x. Subtracting
λx from both sides, this is equivalent to saying that

0 = Ax− λx = (A− λI)x

for some nonzero vector x.

Corollary 4.1.5. By the invertible matrix theorem together with the previous proposition, λ is
an eigenvalue of A if and only if det(A − λI) = 0. We shall call det(A − λI) the characteristic
polyomial of A. Hence, the eigenvalues of A are the roots of its characteristic polynomial.
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Example 4.1.6. Determine whether λ = 3 is an eigenvalue of the matrix

A =

1 2 2
3 −2 1
0 1 1

 .

If so, find a corresponding eigenvector.
Example 4.1.7. Find all eigenvalues for each of the matrices below

A =

0 0 0
0 2 5
0 0 −1

 , B =

4 0 0
0 0 0
1 0 −3

 .

4.2 Diagonalization

Remark 4.2.1. Suppose we are interested in computing A23 for some n×n matrix A, or in general,
Ak for some large value of k. A näıve method would be to perform 22 matrix multiplications, but
this is not ideal.

A slightly better approach is to write k as a sum of powers of 2, in this case 23 = 16 + 4 + 2 + 1.
We already know A, and can compute A2 by squaring it. Once A2 is known, we can square that
to get A4, then again for A8, and finally A16. We can then compute

A23 = A16A4A2A,

requiring 7 matrix multiplications in total.

However, it turns out this is still not ideal. Indeed, if we can “diagonalize” A, then we can compute
Ak for any power k with only 2 matrix multiplications. This method will leverage the fact that
powers of diagonal matrices are easy to compute:

D =

[
5 0
0 3

]
=⇒ D2 =

[
52 0
0 32

]
Definition 4.2.2. Let A be an n× n matrix. We say that A is diagonalizable if it is similar to
a diagonal matrix; that is, if we can write

A = PDP−1

for some invertible matrix P and some diagonal matrix D.
Remark 4.2.3. It is not hard to see why writing A in the above form could be useful. In particular,

Ak = (PDP−1)k = PDP−1PDP−1 . . . PDP−1︸ ︷︷ ︸
k times

= PDkP−1

and since D is a diagonal matrix, Dk is easy to compute. Hence, given a diagonalization for A,
computing Ak can be done very cheaply. However, not all n× n matrices A can be diagonalized.

Exercise 4.2.4. Compute A8, where A =

[
4 −3
2 −1

]
.

Proposition 4.2.5. An n×n matrix A is diagonalizable if and only if A has n linear independent
eigenvectors.

If it does, A = PDP−1 where the columns of P are the n linearly independent eigenvectors of A,
and the diagonal entries of D are the corresponding eigenvalues of A.

11



Corollary 4.2.6. An n × n matrix with n distinct eigenvalues is diagonalizable. Note that this
condition is sufficient, but not necessary.
Example 4.2.7. As a lower triangular matrix, it is clear that the below matrix has repeated
eigenvalues; however, it is still diagonalizable.

A =


5 0 0 0
0 5 0 0
1 4 −3 0
−1 −2 0 −3


4.3 Deriving Binet’s Formula

Example 4.3.1. The Fibonacci sequence is defined by the linear recurrence relation

Fn = Fn−1 + Fn−2, F0 = 1, F1 = 1.

It follows that the first few terms of the sequence are given by

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, . . . .

We will now describe a method for deriving Binet’s formula for Fn based on diagonalization; observe
that we can rewrite the linear recurrence as the matrix equation[

Fn

Fn−1

]
=

[
1 1
1 0

] [
Fn−1
Fn−2

]
=

[
1 1
1 0

]2 [
Fn−2
Fn−3

]
= · · · =

[
1 1
1 0

]n−1 [
F1

F0

]
.

Hence, we would like to diagonalize the matrix

A :=

[
1 1
1 0

]
whose characteristic polynomial det(A− λI) = λ2 − λ− 1 has the roots

λ =
1±

√
5

2

by the quadratic formula. We can then obtain that

v1 =

[
1 +

√
5

2

]
, v2 =

[
1−

√
5

2

]
are eigenvectors corresponding to λ1 = (1+

√
5)/2 and λ2 = (1−

√
5)/2 respectively, giving us the

diagonalization

A = PDP−1 where P =

[
1 +

√
5 1−

√
5

2 2

]
and D =

1

2

[
1 +

√
5 0

0 1−
√
5

]
.

In particular, then[
Fn

Fn−1

]
=

1

20 · 2n−1

[
1 +

√
5 1−

√
5

2 2

] [
1 +

√
5 0

0 1−
√
5

]n−1 [
2
√
5 5−

√
5

−2
√
5 5 +

√
5

] [
1
0

]
,
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and so simplifying the right-hand side, using the fact that powers of diagonal matrices are taken
element-wise, we obtain [

Fn

Fn−1

]
=

1

2n
√
5

[
(1 +

√
5)n − (1−

√
5)n

2(1 +
√
5)n−1 − 2(1−

√
5)n−1

]
.

Finally, observe that we recover Binet’s formula from the first component:

Fn =
1√
5

((
1 +

√
5

2

)n

−

(
1−

√
5

2

)n)
.

Remark 4.3.2. The above process can easily be adapted to compute other constant-recursive
sequences. For example, changing the initial values to 2 and 1 yields the Lucas sequence. Two
other recurrences of interest are

sn = 2sn−1 + sn−2, s0 = 0, s1 = 1

which yields the Pell numbers, as well as

sn = 3sn−1 − 3sn−2 + sn−3, s0 = 1, s1 = 1, s2 = 3

which yields the triangular numbers. In the latter case, the matrix to be diagonalized will be 3×3.

5 Orthogonality

Remark 5.0.1. Recall that an inconsistent system is one which has no exact solutions. However,
for some problems we may be interested in approximate solutions, which do not solve the system
exactly but are as “close” to a solution as possible. In order to make precise this notion of “closeness”
we will study the concepts of orthogonality.

5.1 Metrics, Norms, Inner Products, Oh My!

Definition 5.1.1. Let u,v ∈ Rn. The inner product of u and v is the scalar quantity

u⊤v =
n∑

i=1

uivi.

We will also denote this quantity as u · v.
Proposition 5.1.2. Let u,v ∈ Rn and c ∈ R. The following are immediate from the definition of
inner product and arithmetic properties of real numbers.

(a) u · v = v · u

(b) (u+ v) ·w = u ·w+ v ·w

(c) (cu) · v = c(u · v) = u · (cv)

(d) u · u ≥ 0, and u · u = 0 if and only if u = 0
Definition 5.1.3. Let v ∈ Rn. The norm of v is the scalar quantity

∥v∥ =
√
v · v =

√√√√ n∑
i=1

v2i .

If v is such that ∥v∥ = 1, we say that v is a unit vector.
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Proposition 5.1.4. Let u,v ∈ Rn and c ∈ R. The following follow from properties of the inner
product.

(a) ∥cv∥ = |c|∥v∥

(b) ∥u+ v∥ ≤ ∥u∥+ ∥v∥

(c) ∥v∥ ≥ 0, and ∥v∥ = 0 if and only if v = 0
Definition 5.1.5. Let u,v ∈ Rn. The distance between u and v is the scalar quantity

dist(u,v) = ∥u− v∥.

Properties analogous to those for the norm also follow for distance.
Exercise 5.1.6. Given the vectors

w =

 3
−1
−5

 , x =

 6
−2
3

 ,

compute the quantities w ·w, x ·w, x·w
w·w , ∥w∥, and ∥x∥.

5.2 Orthogonality

Definition 5.2.1. Let u,v ∈ Rn. We say that u and v are orthogonal if u · v = 0. More
generally, a set {u1, . . . ,up} ⊆ Rn is an orthogonal set if each pair of distinct vectors from the
set is orthogonal, that is, if ui · uj = 0 whenever i ̸= j.
Exercise 5.2.2. Show that {u1,u2,u3} is an orthogonal set, where

u1 =

31
1

 , u2 =

−1
2
1

 , u3 =

−1/2
−2
7/2

 .

5.3 QR Factorization

5.4 Least Squares

Definition 5.4.1. Let A be an m× n matrix and b ∈ Rm. A least squares solution of Ax = b
is an x̂ ∈ Rn such that

∥b−Ax̂∥ ≤ ∥b−Ax∥

for all x ∈ Rn.
Proposition 5.4.2. The set of least-squares solutions of Ax = b coincides with the nonempty set
of solutions of the normal equation, A⊤Ax = A⊤b.

6 Symmetric Matrices

6.1 Spectral Theorem

Definition 6.1.1. A matrix A is said to be symmetric if A⊤ = A. Observe that such a matrix
is necessarily square.
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Definition 6.1.2. Let A be an n × n matrix. We say that A is orthogongally diagonalizable
if there exists an orthogonal matrix P and a diagonal matrix D such that

A = PDP⊤.

This is a special form of diagonalization where P is not simply invertible, but orthogonal, such that
P−1 = P⊤.
Proposition 6.1.3. Let A be an n× n matrix. Then A is orthogonally diagonalizable if and only
if A is a symmetric matrix.
Theorem 6.1.4 (Spectral Theorem). Let A be an n × n symmetric matrix. Then A has the
following properties:

(a) A has n real eigenvalues, counting multiplicities.

(b) The dimension of the eigenspace for each eigenvalue λ equals the multiplicity of λ as a root
of the characteristic equation.

(c) Eigenvectors corresponding to different eigenvalues are orthogonal.

(d) A is orthogonally diagonalizable.
Proposition 6.1.5 (Spectral Decomposition). Let A = PDP⊤, with orthonormal eigenvectors
u1, . . . ,un and corresponding eigenvalues λ1, . . . , λn. Then

A = λ1u1u
⊤
1 + λ2u2u

⊤
2 + · · ·+ λnunu

⊤
n .

7 Further Topics

7.1 Polar Decomposition

Theorem 7.1.1 (Polar Decomposition). Let A ∈ Mn(F).

(a) There exist a unitary matrix U and a positive semi-definite matrix P such that A = UP .

(b) P is unique, and in particular, P =
√
A∗A.

(c) U is unique if A is invertible.
Remark 7.1.2. Recall that we can write complex numbers in polar form as z = reiθ. The polar
decomposition can be thought of as an analog for matrices; U is playing a role analogous to eiθ,
that is, the set of unitary matrices are analogous to the unit circle. Likewise, P is playing a role
analogous to r, that is, the set of positive semi-definite matrices are analogous to the non-negative
real numbers.
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